Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.06.18.545480

ABSTRACT

HKU4-related coronaviruses (CoVs) are merbecoviruses related to Middle Eastern Respiratory Syndrome coronavirus (MERS-CoV). In 2022 and 2023, two HKU4-related CoV strains were discovered in Manis javanica (Malayan pangolin) metagenomic datasets derived from organ samples: HKU4-P251T and MjHKU4r-CoV-1. Together with the Tylonycteris robustula bat CoV 162275, which was discovered in 2022, pangolin CoVs HKU4-P251T and MjHKU4r-CoV-1 form a novel phylogenetic clade distinct from all previously documented HKU4-related CoVs. In this study, we identified a novel HKU4-related CoV in a pangolin single-cell sequencing dataset generated by BGI-Shenzhen in Shenzhen, Guangdong, China in 2020. The CoV phylogenetically belongs to the same newly identified clade. The single cell datasets were reported as generated from organ samples of a single pangolin that died of natural causes. 98% of the HKU4-related CoV reads were found in only one of the seven single cell datasets -- a large intestine cell dataset, cells of which exhibit low expression of DPP4. Bacterial contamination was found to be moderately correlated with HKU4-related CoV presence. We further identified with high confidence that the RNA-Seq dataset supporting one of four near identical variants of MjHKU4r-CoV-1 is a Sus scrofa (wild pig) metagenomic dataset, with only a trace level of Manis javanica genomic content. The presence of HKU4-related CoV reads in the dataset are almost certainly laboratory research-related and not from a premortal pangolin or pig infection. Our findings raise concerns about the provenance of the novel HKU4-related CoV we identify here, MjHKU4r-CoV-1 and its four near-identical variants.


Subject(s)
Coronavirus Infections , Porcine Reproductive and Respiratory Syndrome
2.
Viruses ; 15(2)2023 01 20.
Article in English | MEDLINE | ID: covidwho-2200904

ABSTRACT

Porcine coronaviruses and reproductive and respiratory syndrome (PRRS) are responsible for severe outbreaks that cause huge economic losses worldwide. In Italy, three coronaviruses have been reported historically: porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV). Although repeated outbreaks have been described, especially in northern Italy, where intensive pig farming is common, there is a worrying lack of information on the spread of these pathogens in Europe. In this work, we determined the seroprevalence of three porcine coronaviruses and PRRSV in the Campania region, southern Italy. A total of 443 samples were tested for the presence of antibodies against porcine coronaviruses and PRRSV using four different commercial ELISAs. Our results indicated that PEDV is the most prevalent among porcine coronaviruses, followed by TGEV, and finally PRCV. PRRSV appeared to be the most prevalent virus (16.7%). For coronaviruses, seroprevalence was higher in pigs raised in intensive farming systems. In terms of distribution, TGEV is more widespread in the province of Avellino, while PEDV and PRRSV are more prevalent in the province of Naples, emphasizing the epidemic nature of both infections. Interestingly, TGEV-positive animals are more common among growers, while seropositivity for PEDV and PRRSV was higher in adults. Our research provides new insights into the spread of swine coronaviruses and PRRSV in southern Italy, as well as a warning about the need for viral surveillance.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine Reproductive and Respiratory Syndrome , Porcine Respiratory Coronavirus , Porcine epidemic diarrhea virus , Porcine respiratory and reproductive syndrome virus , Transmissible gastroenteritis virus , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/epidemiology , Seroepidemiologic Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Italy/epidemiology
3.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2508557.v1

ABSTRACT

Background: The particle structure of Emiliania huxleyi virus (EhV), an algal infecting member of nucleocytoplasmic large DNA viruses (NCLDVs), contains an outer lipid membrane envelope similar to that found in animal viruses such as African swine fever virus (ASFV). Despite both being enveloped NCLDVs, EhV and ASFV are known for their stability in the environment. Method: Here we report for the first time, the application of a viability PCR method to describe the unprecedented and similar virion thermal stability of both EhV and ASFV. This result contradicts the bioassay method that suggests that virus “infectivity” is lost in a matter of seconds (EhV) and minutes (ASFV) at temperature greater than 50 °C. Confocal microscopy and analytical flow cytometry methods was used to validate the viability PCR data for EhV. Results: We observed that both EhV and ASFV particles has unprecedented thermal tolerances. These two NCLDVs are exceptions to the rule that having an enveloped virion anatomy is a predicted weakness, as is often observed in enveloped RNA viruses (i.e., the viruses causing Porcine Reproductive and Respiratory Syndrome (PRRS), COVID-19, Ebola, or seasonal influenza). Using the viability PCR method, we confirm that no PRRSV particles remain after 20 minutes of exposure to temperatures up to 100 °C. Conclusions: This observation has practical implications for industries involved in animal health and food security. Finally, we propose that EhV could be used as a surrogate for ASFV under certain circumstances.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Fever , Muscle Weakness , Virus Diseases , COVID-19 , Respiratory Insufficiency
4.
Viruses ; 14(12)2022 11 28.
Article in English | MEDLINE | ID: covidwho-2143719

ABSTRACT

Porcine Reproductive and Respiratory Syndrome (PRRS) is the one of the most devastating diseases impacting the swine industry worldwide. Control and prevention methods rely on biosafety measures and vaccination. As an RNA virus with a high rate of mutation, vaccines are only partially effective against circulating and newly emerging strains. To reduce the burden of this disease, research on alternative control methods is needed. Here, we assess the in vitro antiviral effect of a novel platelet-rich plasma-derived biologic termed BIO-PLYTM (for the BIOactive fraction of Platelet-rich plasma LYsate) from both swine and equine origin. Our results show that BIO-PLYTM significantly reduces the amount of PRRSV viral load determined by RT-qPCR and the number of infectious viral particles measured by TCID50 in infected porcine alveolar and parenchymal macrophages. This study also showed limited toxicity of BIO-PLYTM in vitro and aspects of its immunomodulatory capacity evaluating the regulation of reactive oxygen species and cytokines production in infected cells. Finally, this study presents promising data on the effect of BIO-PLYTM on other RNA viruses such as human A influenza viruses and coronavirus.


Subject(s)
Biological Products , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Humans , Swine , Animals , Horses , Porcine Reproductive and Respiratory Syndrome/prevention & control , Macrophages
5.
Front Immunol ; 13: 960709, 2022.
Article in English | MEDLINE | ID: covidwho-2109764

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious disease that affects the global pig industry. To understand mechanisms of susceptibility/resistance to PRRSV, this study profiled the time-serial white blood cells transcriptomic and serum metabolomic responses to PRRSV in piglets from a crossbred population of PRRSV-resistant Tongcheng pigs and PRRSV-susceptible Large White pigs. Gene set enrichment analysis (GSEA) illustrated that PRRSV infection up-regulated the expression levels of marker genes of dendritic cells, monocytes and neutrophils and inflammatory response, but down-regulated T cells, B cells and NK cells markers. CIBERSORT analysis confirmed the higher T cells proportion in resistant pigs during PRRSV infection. Resistant pigs showed a significantly higher level of T cell activation and lower expression levels of monocyte surface signatures post infection than susceptible pigs, corresponding to more severe suppression of T cell immunity and inflammatory response in susceptible pigs. Differentially expressed genes between resistant/susceptible pigs during the course of infection were significantly enriched in oxidative stress, innate immunity and humoral immunity, cell cycle, biotic stimulated cellular response, wounding response and behavior related pathways. Fourteen of these genes were distributed in 5 different QTL regions associated with PRRSV-related traits. Chemokine CXCL10 levels post PRRSV infection were differentially expressed between resistant pigs and susceptible pigs and can be a promising marker for susceptibility/resistance to PRRSV. Furthermore, the metabolomics dataset indicated differences in amino acid pathways and lipid metabolism between pre-infection/post-infection and resistant/susceptible pigs. The majority of metabolites levels were also down-regulated after PRRSV infection and were significantly positively correlated to the expression levels of marker genes in adaptive immune response. The integration of transcriptome and metabolome revealed concerted molecular events triggered by the infection, notably involving inflammatory response, adaptive immunity and G protein-coupled receptor downstream signaling. This study has increased our knowledge of the immune response differences induced by PRRSV infection and susceptibility differences at the transcriptomic and metabolomic levels, providing the basis for the PRRSV resistance mechanism and effective PRRS control.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , Porcine Reproductive and Respiratory Syndrome/genetics , Transcriptome , Immunity, Humoral , Adaptive Immunity/genetics
6.
Int J Mol Sci ; 23(21)2022 Oct 30.
Article in English | MEDLINE | ID: covidwho-2090211

ABSTRACT

Porcine reproductive and respiratory syndrome virus is a positive-stranded RNA virus of the family Arteriviridae. The Gp5/M dimer, the major component of the viral envelope, is required for virus budding and is an antibody target. We used alphafold2, an artificial-intelligence-based system, to predict a credible structure of Gp5/M. The short disulfide-linked ectodomains lie flat on the membrane, with the exception of the erected N-terminal helix of Gp5, which contains the antibody epitopes and a hypervariable region with a changing number of carbohydrates. The core of the dimer consists of six curved and tilted transmembrane helices, and three are from each protein. The third transmembrane regions extend into the cytoplasm as amphiphilic helices containing the acylation sites. The endodomains of Gp5 and M are composed of seven ß-strands from each protein, which interact via ß-strand seven. The area under the membrane forms an open cavity with a positive surface charge. The M and Orf3a proteins of coronaviruses have a similar structure, suggesting that all four proteins are derived from the same ancestral gene. Orf3a, like Gp5/M, is acylated at membrane-proximal cysteines. The role of Gp5/M during virus replication is discussed, in particular the mechanisms of virus budding and models of antibody-dependent virus neutralization.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Viral Envelope Proteins/metabolism , Epitopes , Virus Replication
7.
PLoS One ; 17(9): e0274382, 2022.
Article in English | MEDLINE | ID: covidwho-2021969

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is an extremely contagious disease that causes great damage to the U.S. pork industry. PRRS is not subject to official control in the U.S., but most producers adopt control strategies, including vaccination. However, the PRRS virus mutates frequently, facilitating its ability to infect even vaccinated animals. In this paper we analyze how increased vaccination on sow farms reduces PRRS losses and when vaccination is profitable. We develop a SIR model to simulate the spread of an outbreak between and within swine farms located in a region of Minnesota. Then, we estimate economic losses due to PRRS and calculate the benefits of vaccination. We find that increased vaccination of sow farms increases the private profitability of vaccination, and also transmits positive externalities to farms that do not vaccinate. Although vaccination reduces industry losses, a low to moderate vaccine efficacy implies that large PRRS losses remain, even on vaccinated farms. Our approach provides useful insight into the dynamics of an endemic animal disease and the benefits of different vaccination regimens.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Vaccines , Animals , Endemic Diseases/prevention & control , Farms , Female , Porcine Reproductive and Respiratory Syndrome/epidemiology , Porcine Reproductive and Respiratory Syndrome/prevention & control , Swine , Vaccination/veterinary
8.
Vet Med Sci ; 8(5): 1982-1992, 2022 09.
Article in English | MEDLINE | ID: covidwho-2007117

ABSTRACT

BACKGROUND: Pigs are unique reservoirs for virus ecology. Despite the increased use of improved biosecurity measures, pig viruses readily circulate in Chinese swine farms. OBJECTIVES: The main objective of this study was to examine archived swine oral secretion samples with a panel of pan-species viral assays such that we might better describe the viral ecology of swine endemic viruses in Chinese farms. METHODOLOGY: Two hundred (n = 200) swine oral secretion samples, collected during 2015 and 2016 from healthy pigs on six swine farms in two provinces in China, were screened with molecular pan-species assays for coronaviruses (CoVs), adenoviruses (AdVs), enteroviruses (EVs), and paramyxoviruses (PMV). Samples were also screened for porcine circovirus (PCV) 3, porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV). RESULTS: Among 200 swine oral secretion samples, 152 (76.0%) were found to have at least one viral detection. Thirty-four samples (17%) were positive for more than one virus, including 24 (70.5%) with dual detection and 10 (29.5%) with triple detection. Seventy-eight (39.0%) samples were positive for porcine AdVs, 22 (11.0%) were positive for porcine CoVs, 21 (10.5%) were positive for IAVs, 13 (6.5%) were positive for PCV, 7 (3.5%) were positive for PMV, six (3.0%) were positive for PRRSV and five (2.5%) were positive for porcine EV. CONCLUSION: Our findings underscore the high prevalence of numerous viruses among production pigs in China and highlight the need for routine, periodic surveillance for novel virus emergence with the goal of protecting pigs.


Subject(s)
Circovirus , Influenza A virus , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , Porcine Reproductive and Respiratory Syndrome/epidemiology , Swine
9.
Sci Rep ; 12(1): 3725, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-2004778

ABSTRACT

This study was conducted to evaluate the induction of systemic and mucosal immune responses and protective efficacy following the intranasal administration of inactivated porcine reproductive and respiratory syndrome virus (PRRSV) loaded in polylactic acid (PLA) nanoparticles coupled with heat-labile enterotoxin subunit B (LTB) and dimethyldioctadecylammonium bromide (DDA). Here, 42- to 3-week-old PRRSV-free pigs were randomly allocated into 7 groups of 6 pigs each. Two groups represented the negative (nonvaccinated pigs/nonchallenged pigs, NoVacNoChal) and challenge (nonvaccinated/challenged, NoVacChal) controls. The pigs in the other 5 groups, namely, PLA nanoparticles/challenged (blank NPs), LTB-DDA coupled with PLA nanoparticles/challenged (adjuvant-blank NPs), PLA nanoparticles-encapsulating inactivated PRRSV/challenged (KNPs), LTB-DDA coupled with PLA nanoparticles loaded with inactivated PRRSV/challenged pigs (adjuvant-KNPs) and inactivated PRRSV/challenged pigs (inactivated PRRSV), were intranasally vaccinated with previously described vaccines at 0, 7 and 14 days post-vaccination (DPV). Serum and nasal swab samples were collected weekly and assayed by ELISA to detect the presence of IgG and IgA, respectively. Viral neutralizing titer (VNT) in sera, IFN-γ-producing cells and IL-10 secretion in stimulated peripheral blood mononuclear cells (PBMCs) were also measured. The pigs were intranasally challenged with PRRSV-2 at 28 DPV and necropsied at 35 DPV, and then macro- and microscopic lung lesions were evaluated. The results demonstrated that following vaccination, adjuvant-KNP-vaccinated pigs had significantly higher levels of IFN-γ-producing cells, VNT and IgG in sera, and IgA in nasal swab samples and significantly lower IL-10 levels than the other vaccinated groups. Following challenge, the adjuvant-KNP-vaccinated pigs had significantly lower PRRSV RNA and macro- and microscopic lung lesions than the other vaccinated groups. In conclusion, the results of the study demonstrated that adjuvant-KNPs are effective in eliciting immune responses against PRRSV and protecting against PRRSV infections over KNPs and inactivated PRRSV and can be used as an adjuvant for intranasal PRRSV vaccines.


Subject(s)
Nanoparticles , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Vaccines , Adjuvants, Immunologic , Administration, Intranasal , Animals , Antibodies, Viral , Enterotoxins , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Interleukin-10 , Leukocytes, Mononuclear , Polyesters , Porcine Reproductive and Respiratory Syndrome/prevention & control , Swine
10.
Viruses ; 14(7)2022 06 29.
Article in English | MEDLINE | ID: covidwho-1979407

ABSTRACT

The intramuscular vaccine is the principal strategy to protect pigs from porcine reproductive and respiratory syndrome virus (PRRSV), However, it is still difficult to control PRRSV effectively. This study infected piglets with PRRSV through intramuscular and intranasal inoculation. Subsequently, viral loads, anti-PRRSV antibody levels, and neutralizing antibodies (NAs) titers in both serum and saliva were monitored for 43 days. Meanwhile, tissues were obtained through necropsy at 43 days post-inoculation (dpi) to detect viral loads. The results indicated that viremia lasted from 3 to 31 dpi in both the inoculation groups, but the viruses survived in the lungs and lymph nodes after viremia clearance. The antibody response was detected from 11 dpi, but the response of NAs was delayed until 3-4 weeks. Furthermore, intranasal inoculation induced lower viral load levels than injection inoculation. In addition, positive SIgA and NAs levels were produced early, with higher levels through intranasal inoculation. Therefore, our data indicated that a more robust antibody response and lower virus loads could be induced by intranasal inoculation, and mucosal inoculation could be a suitable pathway for PRRSV vaccines.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , Immunity, Humoral , Swine , Viremia
11.
Transbound Emerg Dis ; 69(4): e1005-e1014, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1968197

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) has been one of the major health-related concerns in the swine production industry. Through its rapid transmission and mutation, the simultaneous circulation of multiple PRRSV strains can be a challenge in PRRSV diagnostic, control and surveillance. The objective of this longitudinal study was to describe the temporal detection of PRRSV in swine farms with different production types and PRRS management strategies. Tonsil scraping (n = 344) samples were collected from three breeding and two growing herds for approximately one year. In addition, processing fluids (n = 216) were obtained from piglet processing batches within the three breeding farms while pen-based oral fluids (n = 125) were collected in the two growing pig farms. Viral RNA extraction and reverse-transcription quantitative PCR (RT-qPCR) were conducted for all samples. The sample positivity threshold was set at quantification cycle (Cq) of ≤ 37. Statistical analyses were performed using generalized linear modelling and post hoc pairwise comparisons with Bonferroni adjustments using R statistical software. The results suggested a higher probability of detection in processing fluids compared to tonsil scraping specimens [odds ratio (OR) = 3.86; p = .096] in breeding farms whereas oral fluids were outperformed by tonsil scrapings (OR = 0.26; p < .01) in growing pig farms. The results described herein may lead to an improvement in PRRSV diagnostic and surveillance by selecting proper specimens.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , Antibodies, Viral/analysis , Demography , Longitudinal Studies , Porcine Reproductive and Respiratory Syndrome/diagnosis , Porcine Reproductive and Respiratory Syndrome/epidemiology , Porcine respiratory and reproductive syndrome virus/genetics , Saliva , Swine
12.
authorea preprints; 2022.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.165296578.86628515.v1

ABSTRACT

Global emergence and re-emergence of Porcine epidemic diarrhea virus (PEDV), an Alphacoronavirus which causes a highly contagious enteric disease, have led to several studies addressing its variability. The aim of this study was to characterize the infection of weaned pigs with Swine enteric coronavirus (SeCoV) -a chimeric virus most likely originated from a recombination event between PEDV and Transmissible gastroenteritis virus, or its mutant Porcine respiratory coronavirus- , and two PEDV G1b variants, including a recently described recombinant PEDV-SeCoV (rPEDV-SeCoV), as well as to determine the degree of cross-protection achieved against the rPEDV-SeCoV. For this purpose, forty-eight 4-week-old weaned pigs were randomly allocated into four groups of 12 animals; piglets in groups B, C and D were orally inoculated with a PEDV variant (B and D) or SeCoV (C), while piglets in group A were mock inoculated and maintained as controls. At day 20 post-infection all groups were exposed to rPEDV-SeCoV; thus, group D was subjected to a homologous re-challenge, groups B and C to a heterologous re-challenge (PEDV/rPEDV-SeCoV and SeCoV/rPEDV-SeCoV, respectively) and group A was primary challenged (-/rPEDV-SeCoV). Clinical signs, viral shedding, microscopic lesions and specific humoral and cellular immune responses (IgG, IgA, neutralizing antibodies and IgA and IFN-γ-secreting cells) were monitored. After primo-infection all three viral strains induced an undistinguishable mild-to-moderate clinical disease with diarrhea as the main sign and villus shortening lesions in the small intestine. In homologous re-challenged pigs, no clinical signs or lesions were observed, and viral shedding was only detected in a single animal. This fact may be explained by the significant high level of rPEDV-SeCoV-specific neutralizing antibodies found in these pigs before the challenge. In contrast, prior exposition to a different PEDV G1b variant or SeCoV only provided partial cross-protection, allowing rPEDV-SeCoV replication and shedding in feces.


Subject(s)
Coronavirus Infections , Porcine Reproductive and Respiratory Syndrome , Gastroenteritis , Diarrhea
13.
Vaccine ; 40(16): 2370-2378, 2022 04 06.
Article in English | MEDLINE | ID: covidwho-1773835

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) are two of the most common pathogens involved in the porcine respiratory disease complex (PRDC) resulting in significant economic losses worldwide. Vaccination is the most effective approach to disease prevention. Since PRRSV and Mhp co-infections are very common, an efficient dual vaccine against these pathogens is required for the global swine industry. Compared with traditional vaccines, multi-epitope vaccines have several advantages, they are comparatively easy to produce and construct, are chemically stable, and do not have an infectious potential. In this study, to develop a safe and effective vaccine, B cell and T cell epitopes of PRRSV-GP5, PRRSV-M, Mhp-P46, and Mhp-P65 protein had been screened to construct a recombinant epitope protein rEP-PM that has good hydrophilicity, strong antigenicity, and high surface accessibility, and each epitope is independent and complete. After immunization in mice, rEP-PM could induce the production of high levels of antibodies, and it had good immunoreactivity with anti-rEP-PM, anti-PRRSV, and anti-Mhp antibodies. The anti-rEP-PM antibody specifically recognizes proteins from PRRSV and Mhp. Moreover, rEP-PM induced a Th1-dominant cellular immune response in mice. Our results showed that the rEP-PM protein could be a potential candidate for the development of a safe and effective multi-epitope peptide combined vaccine to control PRRSV and Mhp infections.


Subject(s)
Mycoplasma hyopneumoniae , Pneumonia of Swine, Mycoplasmal , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Vaccines , Animals , Antibodies, Viral , Epitopes , Mice , Pneumonia of Swine, Mycoplasmal/prevention & control , Porcine Reproductive and Respiratory Syndrome/prevention & control , Swine
14.
Arch Virol ; 167(2): 493-499, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1712247

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating infectious diseases in the global swine industry. A rapid and sensitive on-site detection method for PRRS virus (PRRSV) is critically important for diagnosing PRRS. In this study, we established a method that combines reverse transcription recombinase polymerase amplification (RT-RPA) with a lateral flow dipstick (LFD) for detecting North American PRRSV (PRRSV-2). The primers and probe were designed based on the conserved region of all complete PRRSV-2 genomic sequences available in China (n = 512) from 1996 to 2020. The detection limit of the assay was 5.6 × 10-1 median tissue culture infection dose (TCID50) per reaction within 30 min at 42 °C, which was more sensitive than that of reverse transcription polymerase chain reaction (RT-PCR) (5.6 TCID50 per reaction). The assay was highly specific for the epidemic lineages of PRRSV-2 in China and did not cross-react with pseudorabies virus, porcine circovirus 2, classical swine fever virus, or porcine epidemic diarrhea virus. The assay performance was evaluated by testing 179 samples and comparing the results with those of quantitative RT-PCR (RT-qPCR). The results showed that the detection coincidence rate of RT-RPA and RT-qPCR was 100% when the cycle threshold values of RT-qPCR were < 32. The assay provides a new alternative for simple and reliable detection of PRRSV-2 and has great potential for application in the field.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Porcine Reproductive and Respiratory Syndrome/diagnosis , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/metabolism , Recombinases , Reverse Transcription , Sensitivity and Specificity , Swine
15.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1152562.v1

ABSTRACT

Porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhoea virus (PEDV) have been often simultaneously detected in coronavirus diarrhea piglets. But the intestinal immune of the interaction between the co-circulating PDCoV and PEDV are unknown. Therefore, the study was conducted to investigate intestinal immunity of neonatal piglets that were exposed with PDCoV first and then PEDV subsequently. The amount and distribution of CD3 + T lymphocytes, B lymphocytes and goblet cells (GCs) in small intestine were analyzed by immunohistochemistry and periodic acid-schiff respectively. The expression of pattern recognition receptors and downstream mediator genes were analyzed by qPCR. The results showed that the number of GCs, CD3 + T lymphocytes and B lymphocytes in the small intestine of the PDCoV + PEDV co-inoculated piglets were increased compared with PEDV single-inoculated piglets. The piglets in the group of PDCoV + PEDV were significantly up-regulated IFN-α and IFN-λ 1 when compared with the PEDV single-inoculated piglets. These results suggest that the PDCoV + PEDV co-infected piglets can superiorly activate intestinal antiviral immunity compared to PEDV single-infected piglets, which provide a new insight into the pathogenesis mechanism of swine enteric coronavirus coinfection that may be used for vaccination in the future.


Subject(s)
Coronavirus Infections , Porcine Reproductive and Respiratory Syndrome , Coinfection
16.
authorea preprints; 2021.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.164087639.98636607.v1

ABSTRACT

Respiratory disease in weaned pigs is a common problem in the field, with a complex aetiology of both viruses and bacteria. In the present study, we investigated the presence of eleven viruses in nasal swabs collected from nurseries (fifty-five clinical outbreaks) under the suspicion of swine influenza A virus (swIAV) by cough and fever. The other ten viruses included influenza B (IBV) and influenza D viruses (IDV), Porcine reproductive and respiratory syndrome virus (PRRSV), Porcine respiratory coronavirus (PRCV), Porcine cytomegalovirus (PCMV), porcine circoviruses 2 (PCV2), 3 (PCV3) and 4 (PCV), Porcine parainfluenza 1 virus (PPIV1) and Swine orthopneumovirus (SOV). Twenty-nine swIAV-positive cases and twenty-six cases of swIAV-negative respiratory disease were primarily established. IBV, IBD, PCV4 and PPIV1 were not found in any case, while PRCV, SOV, and PCMV were more likely to be found in swIAV-positive nurseries with respiratory disease ( p <0.05) although, globally, PCV3, PRRSV, and PCMV were the most frequently detected agents on herd level. At an individual level, the prevalence of different viruses was: swIAV 48.6%; PRCV 48.0%; PRRSV 31.6%; SOV 33.8%; PCMV 48.3%, PCV2 36.0%; and PCV3 33.0%. Beyond that, it was common to find animals with low Ct values (< 30) for all agents except for PCV2 and PCV3. When analysed the association between different pathogens, PRCV was the one with the most associations. It positively interacted ( p < 0.05) with swIAV and SOV but was negatively associated ( p < 0.05) with PRRSV and PCVM. Besides these, swIAV and PRRSV were negatively related (p < 0.05). Further analysis of suckling pigs showed that circulation of PRCV, PCMV, SOV, and PCV3 started in the maternities, suggesting a role of the sows in the transmission. Overall, our data may contribute to a better understanding of the complex aetiology and the epidemiology of respiratory disease in weaners. This is the first report of SOV in Spain.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Cytomegalovirus Infections , Fever , Virus Diseases , Respiratory Tract Infections , Influenza, Human
17.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1084768.v1

ABSTRACT

Background: Long non-coding RNAs (LncRNAs) are transcripts longer than 200 nucleotides with no protein-coding ability and exert crucial effects on viral infection and host immune responses. Porcine Epidemic Diarrhea Virus (PEDV) is a coronavirus that seriously affects the swine industry. However, our understanding of the function of lncRNA involved in host-PEDV interaction is limited. Results: : A total of 1197 mRNA transcripts, 539 lncRNA transcripts, and 208 miRNA transcripts were differentially regulated at 24 h and 48 h post-infection. Moreover, gene ontology (GO) and KEGG pathway enrichment analysis showed that DE mRNAs and DE lncRNAs were mainly involved in biosynthesis, innate immunity, and lipid metabolism. Ten differentially expressed genes were randomly selected and validated by reverse-transcription qRT-PCR. In addition, we constructed a miRNA-mRNA-pathway network followed by a lncRNA-miRNA-mRNA ceRNA network. Conclusions: : The present study is the first to reveal the global expression profiles of mRNAs, lncRNAs, and miRNAs during PEDV infection. We comprehensively characterize the ceRNA networks which can provide new insights into the pathogenesis of PEDV.


Subject(s)
Porcine Reproductive and Respiratory Syndrome
18.
BMC Vet Res ; 17(1): 355, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1526636

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the swine industry globally. Evaluation of antibody responses and neutralizing antibody titers is the most effective method for vaccine evaluation. In this study, the B cell line epitopes of PRRSV M protein were predicted, and two peptide ELISA assays were established (M-A110-129 ELISA, M-A148-174 ELISA) to detect antibodies against PRRSV M protein. Field serum samples collected from pig farms were used to validate the peptide ELISA and compare it with an indirect immunofluorescence assay. RESULTS: The sensitivity and specificity of M-A110-129 ELISA and M-A148-174 ELISA were (111/125) 88.80%, (69/70) 98.57% and (122/125) 97.60%, (70/70) 100%, relative to indirect immunofluorescence assay. This peptide ELISA could detect antibodies against different genotypes of PRRSV including type 1 PRRSV, classical PRRSV, HP-PRRSV, and NADC30 like PRRSV, but not antibodies against other common swine viruses. The results of ROC analysis showed that the area under the curve (AUC) of the M-A110-129 ELISA and M-A148-174 ELISA were 0.967 and 0.996, respectively. Compared the concordance of results using two peptide ELISA assays, the IDEXX PRRSV X3 Ab ELISA and a virus neutralization test, were assessed using a series of 147 sera from pigs vaccinated with the NADC30-like PRRSV inactivated vaccine. The M-A148-174 ELISA had the best consistency, with a Cohen's kappa coefficient of 0.8772. The concordance rates of the Hipra PRRSV ELISA kit, M-A110-129 ELISA and M-A148-174 ELISA in the field seropositive detection results were 91.08, 86.32 and 95.35%, relative to indirect immunofluorescence assay. CONCLUSIONS: In summary, compared with M-A110-129 ELISA, the PRRSV M-A148-174 ELISA is of value for detecting antibodies against PRRSV and the evaluation of the NADC30-like PRRSV inactivated vaccine, but the advantage is insufficient in serological early diagnosis.


Subject(s)
Enzyme-Linked Immunosorbent Assay/veterinary , Porcine Reproductive and Respiratory Syndrome/immunology , Vaccines, Inactivated/immunology , Viral Matrix Proteins/immunology , Animals , Antibodies, Neutralizing , Enzyme-Linked Immunosorbent Assay/methods , Fluorescent Antibody Technique, Indirect/veterinary , Porcine Reproductive and Respiratory Syndrome/diagnosis , Porcine respiratory and reproductive syndrome virus/immunology , Sensitivity and Specificity , Swine
19.
authorea preprints; 2021.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.163709067.78952571.v1

ABSTRACT

Porcine Deltacoronavirus is a newly emergent enteric pathogen affecting swine farms worldwide. It has been detected in several countries in Europe, Asia and North America; yet, it has not been reported in South America. In November 2019, an enteric disease outbreak in a pig farm located in San Martin, Peru; was reported along with submission of three intestinal samples from pigs who succumbed to the disease. Samples were processed for molecular detection by qRT-PCR, viral isolation and further sequencing analysis. A taqman-based RT-PCR was performed to differentiate among the most relevant swine enteric coronaviruses described to date. All samples were positive to Porcine Deltacoronavirus with a cycle threshold (Ct) value between 9-14, revealing a high viral load, while testing negative to Porcine Epidemic diarrhea and Transmissible Gastroenteritis viruses. Following detection, viral isolation was performed using PK-15 and Vero cell lines. After 5 days of inoculation, no cytopathic effect was observed. A second blind passage allowed the observation of cytopathic effect on PK-15 cells, while it remained absent in Vero cells. A fluorescence test using an anti-N monoclonal antibody confirmed viral replication. One sample was processed for whole genome sequencing (NGS). In short, raw reads were imported into CLC genomics and assembled de novo . Out of 479k reads generated from the sample, 436k assembled into a 25501 bp contig which was 99.5% identical to a reference Porcine Deltacoronavirus strain from US within the North American phylogroup. Yet, there are relevant differences at the nucleotide and amino acid levels compared to previously described Porcine Deltacoronavirus strains. Altogether, our findings represent the first report of Porcine Deltacoronavirus in South America, its genomic characterization, which provides information of its evolutionary origin. Thus, this study offers new insights into the molecular epidemiology of Porcine Deltacoronavirus infections in the swine industry.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Encephalomyelitis, Enzootic Porcine
20.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-967878.v1

ABSTRACT

Infectious disease such as COVID-19 poses a considerable threat to public health when a pandemic strain emerges. Constructing a reliable mathematical model helps us quantitatively explain the kinetic characteristics of antibody-virus interactions, which could provide a reasonable prediction toward many sensitive concerns faced by the public, such as how to calculate protection time provided by the specific vaccine. A novel and robust model is developed to integrate antibody dynamics with virus dynamics in the host body. Our model is based on a comprehensive understanding of immunology principles rather than a simple data-fitting attempt by arbitrarily mathematical function selection. The physical-based mechanism would bring this model more reliable and broader prediction performance. This model gives quantitative insights between antibody dynamics and virus loading in the host body. Based on this model, we can estimate the antibody dynamic parameters with high fidelity. We could solve lots of critical problems, such as the calculation of vaccine protection time. We can also explain lots of mysterious phenomena such as antibody inferences, self-reinfection, chronic infection, etc. We suggest the best strategy in prolonging the vaccine protection time is not repeated inoculation but a directed induction of fast binding antibodies. Eventually, it will also inform the future construction of the mathematical model and help us fight against those infectious diseases.


Subject(s)
COVID-19 , Porcine Reproductive and Respiratory Syndrome , Communicable Diseases
SELECTION OF CITATIONS
SEARCH DETAIL